

MitraClip for Low, Intermediate, and High-Risk Patients

Elaine Tseng, MD

Professor of Surgery, University of California San Francisco
Chief of Cardiothoracic Surgery, San Francisco VA
Nov 16-18, 2023 Ho Chi Minh City, Vietnam

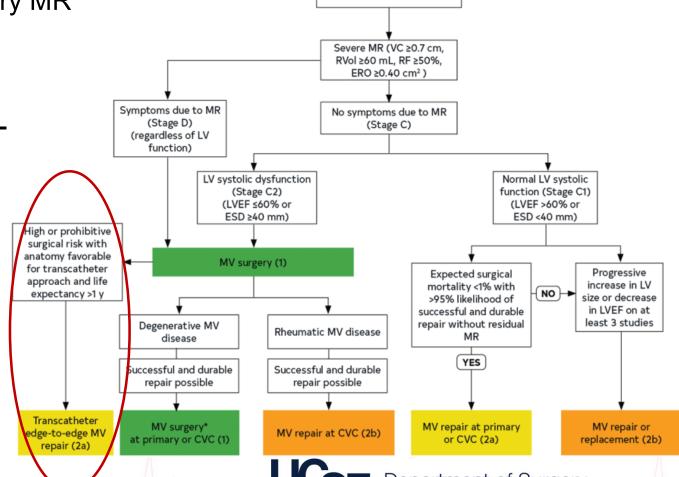
Disclosures

• None

Outline

Primary MR

- Guidelines
- High or Prohibitive Risk: EVEREST II 5 yr
- EXPAND G4 1 yr
- STS/ACC TVT Registry: High, Intermediate, Low STS-PROM Risk
- Intermediate and Low Risk Trials

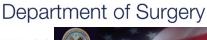


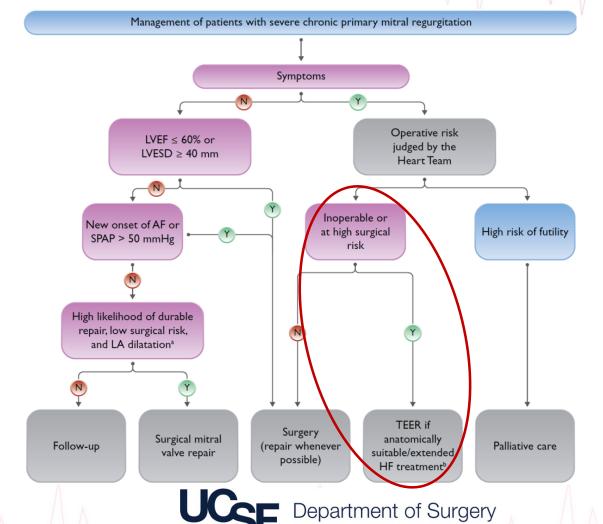
2020 ACC/AHA Guideline

Valvular Heart Disease: Primary MR

2a B-NR: Severe sx MR
with primary MR, high or
prohibitive surgical risk: MTEER is reasonable if
anatomy is favorable for
TEER and life expectancy
is at least 1 yr.

Primary Mitral Regurgitation

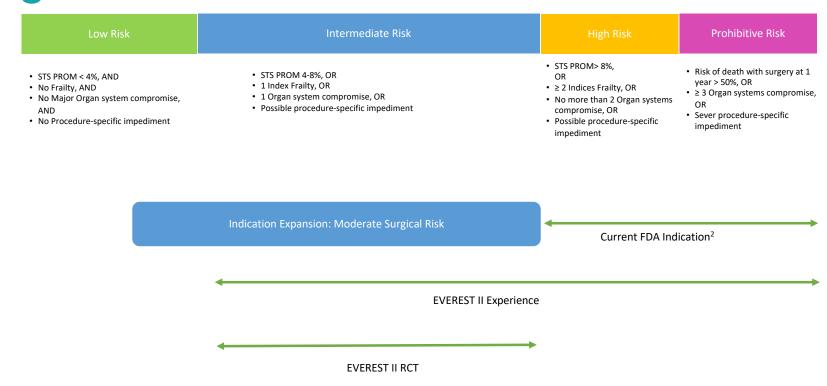




2021 ESC/EACTS Guidelines

Valvular Heart Disease: Primary MR

 2b B: M-TEER may be considered in High or prohibitive surgical risk: severe sx MR, anatomically suitable, and when procedure not considered futile



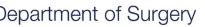
Background: Current risk scale

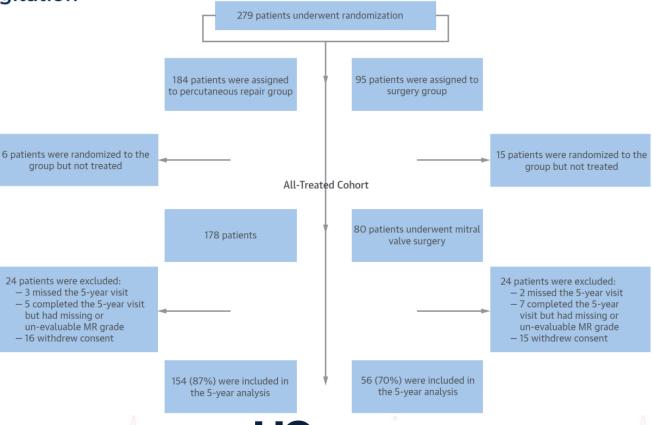
Slide Courtesy of Gorav Ailawadi MD and Gilbert Tang MD

Randomized Comparison of Percutaneous
Repair and Surgery for Mitral Regurgitation

Endovascular Edge-to-Edge Repair Study

- Multicenter, randomized, nonblinded trial of MitraClip vs surgery for MR to 5yr f/u in 2013.
- 279 pts enrolled at 37 North American centers, 2005-2008
- 2:1 ratio perc n=178 or surgery n=80
- Eligibility: mod-sev 3+ or sev 4+ chronic MR, sx with LVEF >25% and LVESD ≤55mm OR asx with 1 or more: LVEF 25-60%, LVESD ≥40mm, new onset AF, or PASP >50mmHg at rest or >60mmHg with exercise
- Anatomic inclusion: primary regurgitant jet A2 and P2 MV, both functional and degenerative
- Endpoints: freedom from death, surgery for MV dysfunction, and 3+/4+ MR; freedom from death; freedom from surgery for MV dysfunction; freedom from death and surgery for MV dysfunction



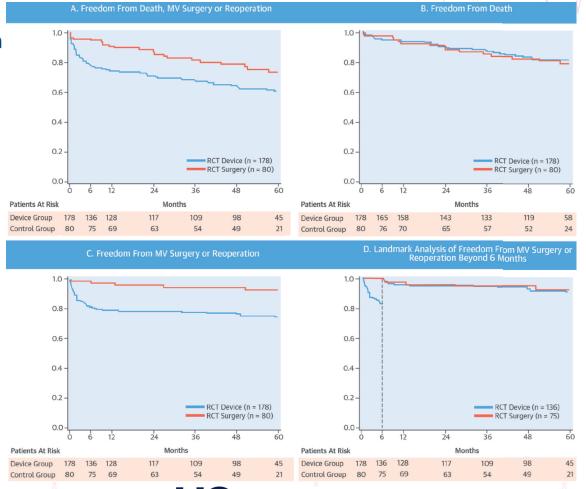


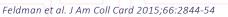
Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation

- Mitraclip: single 50.6%, double clip 38.2%, not deployed 11.2%
- Single leaflet device detachment (SLDA) n=9 within 1 yr, n=1 at 14 mo
 - All underwent surgery: 5
 MVR and 5 MVr
- No device embolization
- MS n=1, underwent MVR

Endovascular Edge-to-Edge Repair Study

Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation

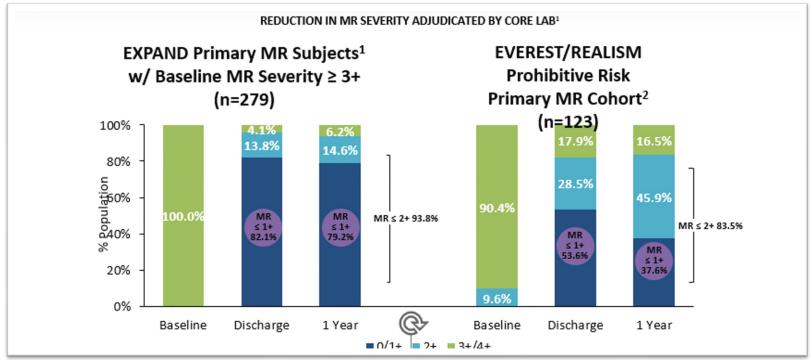

- Freedom from death, surgery & 3+/4+ MR at 5 yrs superior for surgery 64% vs Mitraclip 44%, p=0.01
- No difference in death: surgery 20.8% vs TEER 26.8%, p=0.36
- Need for reoperation/surgery > for TEER 28% vs surgery 9%, p=0.003
- 3+/4+ MR > for TEER 12% vs surgery 2%, p=0.02



Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation

Subgroup	Percutaneous Repair	Surgery	Difference (95% CI)	p value								Intera p va
Sex												0.8
Male	42.9 (42/98)	63.9 (23/36)	-21.0% (-39.5% to -2.5%)	0.03		_		<u> </u>				
Female	46.4 (26/56)	65.0 (13/20)	-18.6% (-43.2% to 6.1%)	0.15								
Age												0.0
Age ≥70 yrs	45.1 (32/71)	42.3 (11/26)	2.8% (-19.5% to 25.0%)	0.81			_					
Age <70 yrs	43.4 (36/83)	83.3 (25/30)	-40.0% (-57.0% to -22.9%)	< 0.001			_					
Type of MR												0.02
Functional MR	40.5 (17/42)	28.6 (4/14)	11.9% (-16.0% to 39.8%)	0.43			_					
Degenerative MR	45.5 (51/112)	76.2 (32/42)	-30.7% (-46.5% to -14.8%)	< 0.001								
VEF												0.04
LVEF <60%	44.1 (26/59)	41.2 (7/17)	2.9% (-23.7% to 29.5%)	0.83								
LVEF ≥60%	44.1 (41/93)	74.4 (29/39)	-30.3% (-47.3% to -13.3%)	0.001								
					-60	-40	-20 Diff	0 ference [95% (20 [1]	40	60	
					Surge	ry better			Per	cutaneous re	epair etter	

- Surgery performed better than TEER in younger pts (<70).
- Surgery better for degenerative MR than TEER.
- Surgery better for LVEF ≥60%



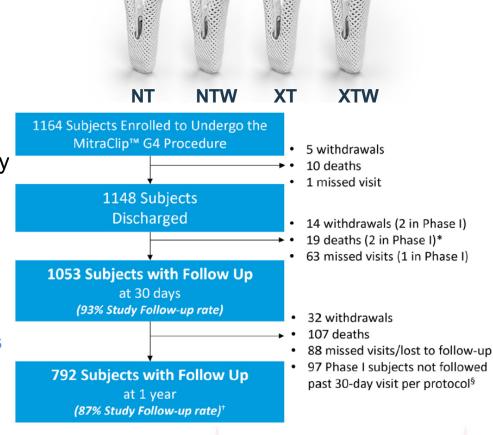
Outcomes Improved with Experience and New Generation Devices

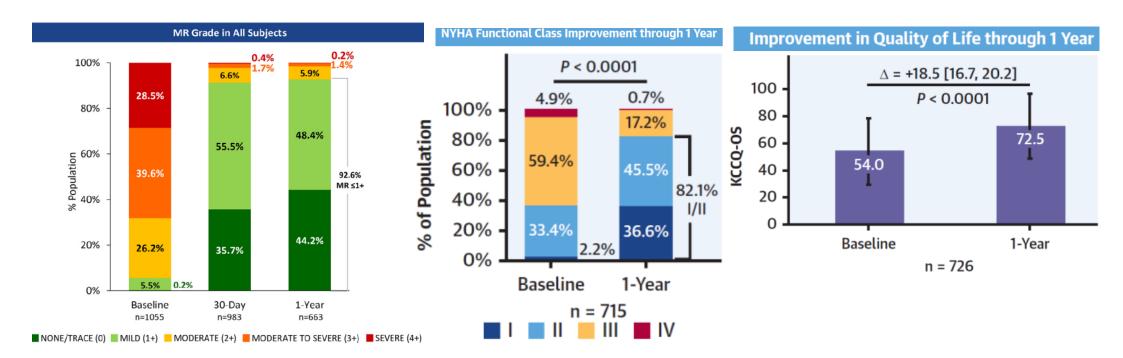
 Significant durable MR reduction with MitraClip therapy in contemporary use (EXPAND) compared to historical trials (EVERST/REALISM)

Courtesy of Gilbert Tang MD and Gorav Ailawadi MD

1-Year Outcomes With Fourth-Generation Mitral Valve Transcatheter Edge-to-Edge Repair From the EXPAND G4 Study

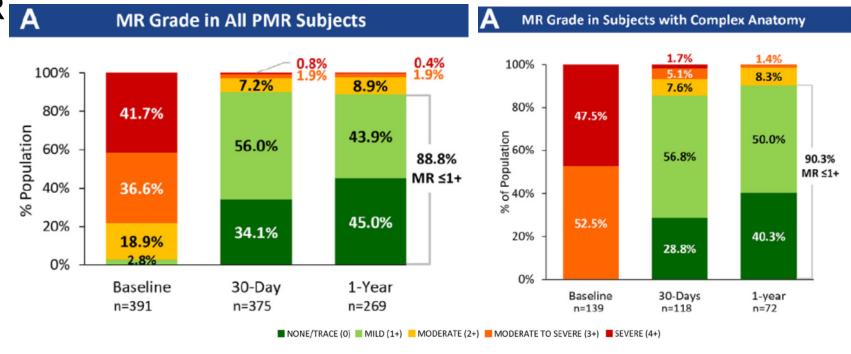
- 4th generation MitraClip G4: 2 wider clip sizes (NTW, XTW), independent grasping feature, improved clip deployment sequence
- Objective:1-yr outcomes G4 system in contemporary real-world


- Prospective, multi-center, international, single arm study
- Primary and secondary MR
- N=1164 pts M-TEER 2020-2022, 60 centers US, Canada, Europe and Japan
- Follow Up: Discharge, 30d, and yearly through 5yrs
- **Key Outcome Measures:** All-cause mortality, HFH, MR severity, functional capacity NYHA class, QOL (KCCQ)



1-Year Outcomes With Fourth-Generation Mitral Valve Transcatheter Edge-to-Edge Repair From the EXPAND G4 Study

93% had MR ≤1+, 82% NYHA I/II, KCCQ score improved by 18.5 point

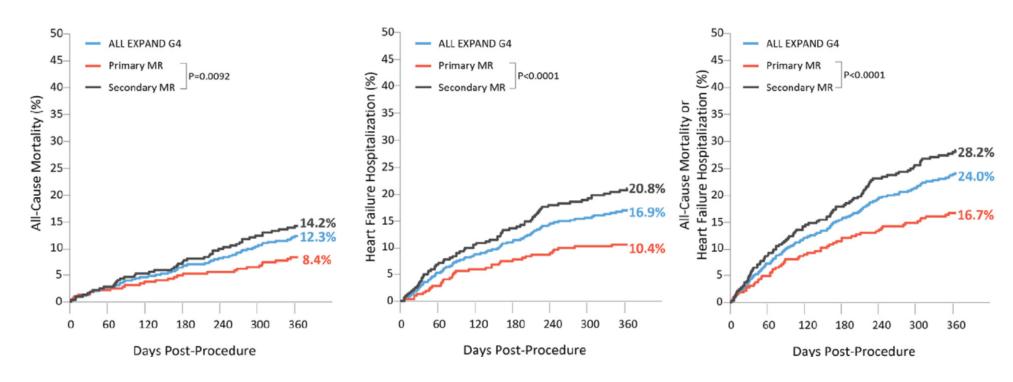


UCCE Department of Surgery

1-Year Outcomes With Fourth-Generation Mitral Valve Transcatheter Edge-to-Edge Repair From the EXPAND G4 Study

Primary MR

- Primary MR (43%): 89% had ≤1+ MR
- With complex anatomy 90% had ≤1+ MR



1-Year Outcomes With Fourth-Generation Mitral Valve Transcatheter Edge-to-Edge Repair From the EXPAND G4 Study

Primary MR had less all-cause mortality, less heart failure hospitalizations, and less combined endpoint



JAMA | Original Investigation

Transcatheter Mitral Valve Repair for Degenerative Mitral Regurgitation

STS/ACC TVT Registry

- All pts mod-sev or sev degenerative MR TMVr in US 2014-2022
- STS-PROM risk: high ≥8%, intermediate 2-8%, low <2%
- TMVr N=60883 Mitraclip total: N=19088 degenerative MR mod-sev or sev
 - N=1929 (10.1%) low risk STS <2%, 12973 (68%) intermediate, 4186 (21.9%) high risk
- Median age 82 (IQR 76-86); 48% women; 78% NYHA class III/IV
- Median STS MVr risk 4.6% (2.8-7.4%)

JAMA | Original Investigation

Transcatheter Mitral Valve Repair for Degenerative Mitral Regurgitation

STS/ACC TVT Registry

- MR success = mod or less residual MR, no sev MS (<10mmHg)
- MR success 95% at procedure, 93% at discharge, 89% at 30d
- MR success increased 82% 2014 to 92% 2022

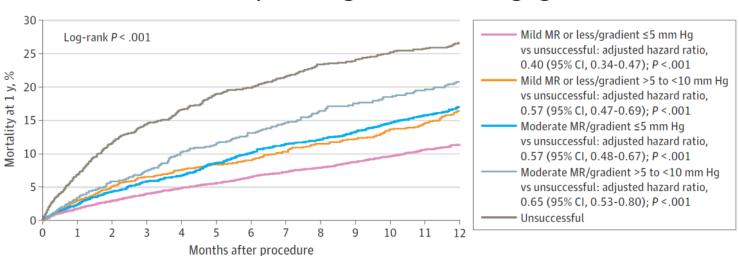
Mean mitral valve gradient, mm Hg	>10	Unsuccessfu	2067/18 766 (11.0%)			
	>5 to <10	Mild MR or less and mitral gradient 5-10 mm Hg 2221/18 766 (11.8%)	Moderate MR and mitral gradient 5-10 mm Hg 1207/18 766 (6.4%)	Unsuccessfi		
	<5	Mild MR or less and mitral gradient ≤5 mm Hg 9824/18766 (52.4%)	Moderate MR and mitral gradient ≤5 mm Hg 3447/18 766 (18.4%)	Unsuccessful procedure		
		Mild MR or less	Moderate MR	Higher than moderate MR		
		Residual MR				

JAMA | Original Investigation

Transcatheter Mitral Valve Repair for Degenerative Mitral Regurgitation

STS/ACC TVT Registry

- In hospital and 30-d Outcomes
 - In-Hospital mortality 1.1%; at 30d 2.7% (STS-PROM 4.6%)
 - CVA 0.6%; at 30d 1.2%
 - Need for unplanned cardiac surgery or intervention 1.1%; at 30d 0.97%
 - SLDA 0.9%; Device Embolization 0.08%
 - Median LOS 1 day (IQR 1-3d)
- 1 yr Outcomes
 - Death 15.4%
 - Mitral valve reintervention 3.4%
 - HF admission 9.3%



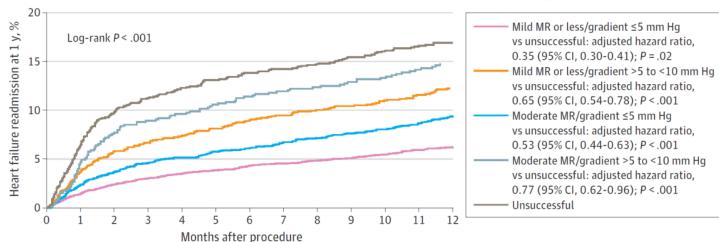


JAMA | Original Investigation

Transcatheter Mitral Valve Repair for Degenerative Mitral Regurgitation

STS/ACC TVT Registry

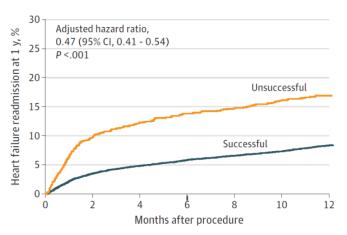
- MR success 95% at procedure, 93% at discharge, 89% at 30d
 - MR success increased 82% 2014 to 92% 2022
 - Pts mild MR or less & gradient <10mmHg increased from 45% 2014 to 72% 2022.
- Pts with better MR success had lower 1-yr mortality

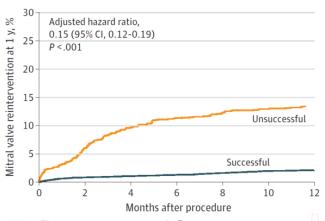


JAMA | Original Investigation

Transcatheter Mitral Valve Repair for Degenerative Mitral Regurgitation

- Level of MR success impacted HF readmission
- Pts with procedure success had significantly reduced HR readmission, and MV reintervention rates at 1yr than those with unsuccessful TEER





STS/ACC TVT Registry

Ongoing Randomized Trials of TEER

Intermediate and Low Risk

- REPAIR MR: MitraClip vs Surgical Mitral Valve Repair for Severe Primary MR in pts of Intermediate Surgical Risk
- •PRIMARY: TEER versus Surgical Mitral Repair in pts ≥65 years old with Primary Degenerative MR of any Surgical Risk (Low, Intermediate, or High)

REPAIR MR Clinical Trial

Percutaneous MitraClip™ Device or Surgical Mitral Valve REpair in PAtients with PrImaRy Mitral Regurgitation who are Candidates for Surgery (REPAIR-MR)

Prospective, randomized, controlled, multi-center clinical trial of the MitraClip™ device in patients with severe primary mitral regurgitation, whose mitral valve has been determined to be suitable for correction by MR repair surgery.

Randomize 1:1

MitraClip™ N=250 Open Surgical Repair N=250

Courtesy of Gilbert Tang MD and Gorav Ailawadi MD

REPAIR MR Clinical Trial

Patient Population

- Symptomatic, or asymptomatic (LVEF ≤ 60%, PA Systolic Pressure > 50 mmHg, or LVESD > 40 mm)
- ≥75 years of age, OR if younger:
 - STS-PROM Score ≥ 2%, OR
 - Presence of other comorbidities which may introduce a potential surgical specific impediment

Severe Primary Mitral Regurgitation (Grade III/IV per ASE* Criteria)

Cardiac Surgeon of the Site Heart Team Concurs that the Mitral Valve can be repaired with a high degree of success

YES

Subject Meets all Inclusion/Exclusion Criteria and the Eligibility Committee Confirms that MR can be Reduced to ≤ Mild with Both MitraClip and Mitral Valve Repair Surgery

NO⇒

-NO→

Exclude Subject

Exclude Subject

↓YES

Randomization (1:1) (N=500)

Transcatheter Repair - MitraClip (Device)

Surgical Mitral Valve Repair (Control)

REPAIR MR Trial: Noninferiority Design

Primary and Secondary Endpoints

PRIMARY ENDPOINTS

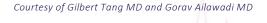
- Co-Primary Endpoint #1: All-cause mortality, stroke, cardiac
 hospitalization, or acute AKI requiring renal replacement therapy at 2 yrs
 (any cardiac hospitalizations in the first 30d post treatment will be excluded)
- •Co-Primary Endpoint #2: Proportion of subjects with ≤ Moderate MR (≤2+), w/o MVR, and w/o recurrent MV intervention (surgical or percutaneous) to 2 yrs.

SECONDARY ENDPOINTS

- MR ≤ Mild (≤ 1+) at 30d post-index procedure among survivors
- Hospital LOS from procedure to home discharge (days)
- Discharge to home post index hospitalization
- QOL improvement of at least 10 points at 2 yrs assessed using KCCQ (Kansas City Cardiomyopathy Questionnaire) compared to baseline among survivors
- Severe Symptomatic Mitral Stenosis at 1 yr

Percutaneous or Surgical Repair In Mitral Prolapse And Regurgitation for ≥65 Years

PRIMARY Trial


- Primary aim: Evaluate long-term effectiveness and safety of MV TEER vs surgical repair in primary DMR.
- Secondary aim: Analyze relationship btw adequacy of MR correction at 1 yr post randomization and long-term clinical outcomes (death, HF hospitalizations/urgent care visits, valve reinterventions, and QOL).
- Tertiary aim: Evaluate patient-centered outcomes (QOL, functional status, discharge location).

PRIMARY Trial Design

- Prospective, multi-national, open-label, randomized trial comparing TEER to surgical repair (1:1 ratio) degenerative MR
- Trial conducted in U.S., Canada, Germany, Spain, Belgium and UK and is designed as a strategy trial: all devices approved for use in a country may be eligible to be used
- The trial uses a superiority design



Courtesy of Gilbert Tang MD and Gorav Ailawadi MD

PRIMARY Inclusion Criteria

- ≥65 years of age with mod-sev 3+ or severe 4+ primary, degenerative MR by TTE
- Local heart team verified clinical indications for MV intervention and both surgical and transcatheter edge-to-edge repair strategies are anatomically suitable
- Low, intermediate or high surgical risk

PRIMARY Endpoints

Primary Outcome Measure

- Composite at ≥3yrs:
 - All-cause mortality
 - Any mitral re-intervention including intra-operative conversion to replacement
 - Heart failure hospitalizations (adjudication committee)
 - ≥ 2+ (moderate) MR (core-lab adjudicated)
- Primary safety endpoint: stroke + major bleed

Courtesy of Gilbert Tana MD and Gorav Ailawadi MD

Randomized Trials of TEER vs. Surgery

EVEREST II (2011)	PRIMARY	REPAIR-MR	MITRA-HR
Abbott	NIH	Abbott	France
All-comers (30% FMR)	DMR All-comers>60 years	DMR Moderate risk	DMR High risk
Non-inferiority	Superiority	Non-inferiority	Non-inferiority
MitraClip vs Surgery	TEER vs. Surgery	MitraClip vs. Surgery	MitraClip vs Surgery
A) 1-year death, MV surgery, >3+ MR B) Death, MI, surgery, stroke, renal failure, infection, >48 h ventilation, AF, >2 units blood	A) 3-6 year death, any mitral reintervention, heart failure hospitalization, ≥2+ MR B) Stroke + major bleed	A) 2-year death, stroke, heart failure hospitalization, dialysis B) 2-year <2+MR without replacement or reintervention	1-year death, unplanned cardiovascular rehospitalization, mitral re-intervention
272	450 - 650	500	330



Thank you

U.S. Department of Veterans Affairs